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ABSTRACT

In the early 1980's John J. Hopfield developed a
recurrent network based on a model of biological neurons. In

his model, each neuron accepts inputs from all other neurons
in the network, modifies each input with a weight and converts

their sum to an output via the non-linear sigmoid transfer
function. This output is then fed back to each of the input

paths where the input signals are updated before the next

summation. It has been proposed that this network can be
successfully applied to the problem of system parameter
identification where the weights are functions of the system
states and the network, after being allowed to process a
continuous block of system states, is guaranteed to converge
to the system parameters. This thesis explores the concepts of
network stability and solution existence for a time-invariant

system. It is shown that the n~twork will converge as expected
provided the steady-state solution falls within the range of

values of the sigmoid transfer function. Experimentation with

the network when not all system states are measurable revealed
that knowledge of the actual system parameters is necessary to
obtain convergence because of large error between the actual
and estimated system states, showing that minimization of this
error must take place before the network is integrated.
Finally, it is shown that as system parameters vary, the
Hopfield network will track the parameter changes provided the
system remains persistently excited by the input.
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I. INTRODUCTION

A. ACKG3oUND OF TiE PS AUV II PROJECT

The Naval Postgraduate School's Autonomous Underwater

Vehicle II (NPS AUV II) supports the second generation of

projects focusing on the development of an unmanned,

untethered vehicle possessing sufficient, self-contained

intelligence to perform a broad range of missions while being

able to respond to unplanned situations and take appropriate

actions. The project is part of the U.S. Navy's ongoing

studies of unmanned, sub-surface, marine vehicles and their

usefulness in an expanded role in the future Navy. As

described in Healey et al., [Ref. 1], the NPS AUV II is the

first of its kind to attempt a Mission Planning Expert System

which will serve as a framework within which all of the

vehicle's logical operations and resulting actions will be

carried out.

The vehicle's missions might consist of any of the sub-

surface tasks currently being conducted by manned surface and

sub-surface vehicles and by free-swimming personnel. It would

be required to successfully navigate within a prescribed

operating area while avoiding all stationary and moving

obstacles but at the same time completely surveying any

objects which meet the "special interest" criteria of its

1



mission planning system. Its mission would also 'include

storing and analyzing data before deciding future courses of

action appropriate to its mission and be capable of eventually

down-loading all such data for human analysis. Unplanned

situations might encompass sudden changes in the vehicle's

operating environment such as shifts in current direction and

speed, the sudden presence of belligerent animals or vehicles.,

faults in its own logic or operating systems, or errors in its

mission program (i.e., incorrect navigation information).

The capabilities of such a vehicle are far removed from

those of any similar platform in use today. Such a vehicle as

NPS AUV II must ultimately possess complete "knowledge" of its

own operational abilities, similar to what humans refer to as

"motor skills," while at the same time be able to "think"

about various responses and courses of action and decide which

would best suit the goals of its mission. Such capability, and

the numbingly vast array of possibilities it entails, can not

possibly be programmed into a computer as a series of tasks.

The prospect of a so-called "thinking machine" is not so far-

fetched, however, and this is where the theory of Artificial

Neural Networks (ANN) may eventually find application.

B. ARTIFICIAL NZURAL NZTKORKS

The origin of ANN may be traced back to as early as 1943,

when McCulloch and Pitts wrote their landmark paper "A Logical

Calculus of Ideas Immanent in Nervous Activity" [Ref. 2].

2



Since then scientists, engineers, physicists, and biologists

have been studying ways to mathematically model the human

brain's ability to accept inputs from many, completely

different types of sensors, analyze that data, decide on a

course of action, trigger the proper response in its

operational appendages, and learn from the results of that

response. The focus of the research efforts in the field has

been centered on a mathematical relationship called a neuron,

akin to the biological brain cell of the same name, whose

output is a weighted summation of the inputs from other

neurons and which is then used either as an input to other

neurons or as part of the output of the network as a whole.

Most importantly, for application to "thinking machines," the

output of any particular neuron can be used in a feedback loop

to modify the weights associated with its own inputs. This

type of network, known as "recurrent," shows a minimal ability

to "learn" that a particula ' pattern of inputs produces a

corresponding series of outputs based on the values of the

input weights, marginally like the functioning of short-term

memory in humans.

C. ANN AND NPS AUV II

In examining the need for NPS AUV II to "know" its own

capabilities and limitations and the usefulness of ANN in

"learning" a pattern associated with a particular input

environment, a connection can be made with neural networks for
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diagnostics (Ref. 3,] and system parameter identification

[Ref. 4]. It has been proposed that a Hopfield network [Ref.5]

(Ref. 6) can be configured in continuous time to accept a time

history of the state-space response of a dynamic system

represented by the equation

-Ax+u(1)

where X is a vector of state variables, I is its time

derivative, and U is the system input, and identify the system

parameters represented by the matrices A and B. System

parameter identification provides the vehicle with its own

blueprint for input-output response upon which it will base

its decisions regarding the proper actions needed to effect

desired results. By continuously updating its own database as

system parameters change, such events as internal faults or

external, environmental limitations can be detected and

diagnosed.

The focus of this thesis is on exploring the method of

Shoureshi and Chu (Ref. 4) to determine if it might, indeed,

be useful for vehicle system parameter identification in real

time. The next chapter provides a brief history of ANN,

focusing on the Hopfield recurrent network and how it is

adapted by Shoureshi and Chu to system parameter

identification. Chapter III presents the results of stability

investigations of the Hopfield network formulation and the

speed of convergence to expected solution values. Chapter IV
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delves into study of the use of full-state and reduced-order

observers with the Hopfield network to determine if the

network will correctly identify system parameters when not all

system states are measurable. Chapter V is a study of the

ability of the network to track the pattern of system

parameters as they vary with time. Finally, in Chapter VI a

summary of the strengths and limitations of Hopfield networks

and recommendations for future research in related fields are

presented.

5



II. PARAMEkTR IDONTIFICATION AND HOPFIZLD NETWORKS

A. INTRODUCTION

This chapter begins with a brief history of the study of

ANN and presents an overview of the first ANN algorithms,

which continue to provide a foundation for current research.

Emphasis is placed on the development and theory of Hopfield

networks, not only because the Hopfield model is the basis for

the research in this thesis, but because it also helped infuse

the flagging ANN research community with new energy in the

early 1980's. Much more detailed analyses of the entire

history and scope of ANN research, including that which has

been conducted since Hopfield's efforts in 1982-1984, can be

found throughout Wasserman (Ref. 7] and NeuralWare (Ref. 8].

Those references also serve to guide the history and

background information in this chapter.

B. HISTORY OF ANN

As mentioned in Chapter I the impetus for the study of

mathematical models for brain activity began with McCulloch

and Pitts in 1943. Their subsequent work focused on the neuron

model shown in Figure 1, reprinted from Wasserman (Ref. 7:p.

28], which shows the neuron modeled as a summation of several

weighted inputs. The result of the summation is then compared

to some threshold value: if the threshold is exceeded, the

6



1 Threshol

Figure 1. Single Perceptron Network
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output is 1; otherwise it is 0. This basic system, which

became the foundation on which the first generation of ANN was

built, is represented mathematically as

N

i, if .Wixi>THRESHOLD

vjl (2)
N

0, if EWixi <THRESHOLD

In the 1950's and 1960's this simple system was greatly

expanded into multi-layered networks, with variations being

applied to such diverse fields as pattern classification

(Rosenblatt (Ref. 9)), signal filtering (Widrow [Ref. 10)),

and macroscopic intelligence (Minsky [Ref. 11]). All such

applications were based on a learning rule proposed by Hebb

[Ref. 12) which assumes a multi-layered network where neurons

are interconnected as well as available to receive and

transmit external inputs and outputs. Basically, where two

neurons, represented by subscripts i and j, are connected to

each other and to other neurons in the network, the value of

the weighted connection is adjusted based on the values, or

"excitation levels;" of the two neurons. In equation form,

Wi5(t+l) WWiJ(t) +0101 (3)

where W,3 a the weight of connection from i to j
0i m the excitation level of neuron i
03 a the excitation level of neuron j

The weights are increased, and the connections strengthened,

each time the vector of inputs produces excitation levels for

8



both i and j equal to the binary value 1. As each successive

vector of training inputs is applied, a pattern of weight

values emerges where often-used paths are strengthened well

above the levels of little-used paths. Provided the training

data is of sufficient quantity, this pattern will

theoretically produce a desired vector of output values

equivalent to those of the training sets and the network can

be said to have learned the correct response to a given input.

In subsequent uses of Hebbian learning, the manner in

which the products of the two excitation levels is obtained

has been altered through various functions. Wasserman [Ref.

7:pp. 99-100] uses the term "activation function" to describe

a class of functions where V=F((). The function F may be a

simple threshold function where

1, if G>THRESHOLD (4)

0, if e<THRESHOLD

and THRESHOLD is some constant value. Later variations have

modeled F as a simple linear function with or without some

gain multiplier, while more recent forms have sought to

emulate the actual activity of a biological neuron. This last

form figures prominently in the work of Hopfield [Ref. 5]

[Ref. 6] and will be the subject of extensive discussion in

Section E of this chapter.

The claims that the proponents of ANN were making

regarding the usefulness and wide application of their

9



algorithms led Minsky to apply rigid mathematical tests to the

theory of "perceptrons," a term coined by Rosenblatt (Ref. 9]

to describe his variation of the McCulloch-Pitts algorithm. In

their book Perceptrons [Ref. 11] Minsky and Papert proved that

the perceptron algorithm was not able to solve the simple,

"exclusive-or" (XOR) problem, which is linearly inseparable.

A detailed analysis of this shortcoming is presented by

Wasserman [Ref. 7:pp. 29-33], who represents the XOR problem

in tabular form for a perceptron consisting of one neuron and

two inputs, designated x and y. Table I is reproduced here,

where the values of x and y are binary and the output, e,
follows the XOR rule.

TABLE I. TIN "IXCLUSBVZ-OR" PROBLUM

0 0 0

1 0 1

0 1 1
1 1 0

The equation for the summation of the neuron inputs is

0- xw1 + yw2  (5)

where the output V of the neuron takes the form of Equation

(4) where THRESHOLD can be any constant value between 0 and 1.

Minsky proved that there is no set of weights, w, and w2, that

will completely duplicate Table I, regardless of the threshold

10



value. This revelation, among others, proved a heavy blow to

the study of ANN and greatly contributed to the dearth of

research in the field throughout the 1970's.

C. NOPFIZLD'S CONTRIBUTION

Though limited work on ANN continued following Minsky's

book, the field was fully revived in 1982 after a presentation

by John J. Hopfield to the National Academy of Sciences in

a. 32 [Ref. 5]. Hopfield began with the system formulation

proposed by McCulloch and Pitts, where the basic network

consists of a set of neurons wlich compute the weighted sum of

the inputs, then set the output to zero or one depending on

their relation to a set threshold value. What made the

Hopfield network unique, however, is the fact that the output

of each neuron is fed back to the inputs of all other neurons.

(In the original formulation, Hopfield believed a neuron could

not be fed back to itself. This has since been abandoned as a

condition.) An example of this "recurrent" network is shown in

Figure 2, reprinted from Wasserman [Ref. 7:p. 95]. The

activity of a neuron is represented as

N

9 E wjvi I z(6)

where the neuron output

1, if 9j > THRESHOLD, (7)
0, if O < THRESHOLDj

11
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Equation (6) is an expanded version of the original algorithmi

where I, is an external bias input. This form of the equation,

and others that follow, appear in a subsequent paper presented

by Hopfield to the National Academy of Sciences [Ref. 6]. The

basic Hopfield learning rule, contrasted with that of Hebb, is

N N

iul Jal(8)

In Equation (8), Vi are values at a kth iteration level in the

training (learning) process and AW±j updates Wij from k to k+l

as k -+ o. It can be seen that the connection weights increase

when the output of a neuron is the same as the input but the

weight values decrease when the input and output differ.

D. THE ISSUE OF STABILITY

A major question which arose regarding the recurrent

Hopfield network was that of stability. This clearly had not

been a problem with perceptrons because of their feed-forward,

static architecture. With the Hopfield net, however, a proof

was needed that the network would converge to a stable state

for all inputs. Building on work by Cohen and Grossberg [Ref.

13], Hopfield theorized that his model followed the activity

of the bounded energy function represented by

N M N N

13



where g is a set threshold value, Ii is a bias, and the energy

of the network must decrease or remain the same as it changes

state. Thus, the change in energy due to a change in the value

of the neuron state Vi is

AE + i - g] (10)

It can be seen that the sign of the expression in the brackets

is inversely proportional to the change in energy E.

Substituting Equation (6) into Equation (10) yields

AE a -AV, [o - g 11)

or, if E) is greater than the threshold g4, the bracketed value

is positive and the output of neuron i must change in the

positive direction or remain constant. This means that AVj can

only be positive or zero, so AE must be negative, or E is

decreasing. If G1 < g,, the bracketed value is negative and AVj

must be negative or zero so again AE must be negative.

Finally, if O = gi, AE is zero and E remains constant. Since

under all conditions E is either decreasing or unchanged, this

function, which is bounded, must eventually reach some bounded

minimum value, proving the eventual stability .of the network

states.

14



Z. TRE CONTINUOUS NOPIZLD MODZL

Having proven that his discrete-state m6del was stable

under all conditions, Hopfield sought to expand the model to

cover continuous systems, which represented a more realistic

application [Ref. 6). The original model, where the change in

states of a neuron is represented by a binary "on-off" firing,

was retained for the continuo.is formulation. However, Hopfield

noted that actual state chant is were non-linear and lagged the

outputs of other neurons -r m which its inputs were fed. He

modeled this characteristic as a simple RC circuit, with input

capacitance C, neuron resistance R, and the impedance between

the output of neuron j and input of neuron i designated Wij.

Thus,

C d( i N V +1(12)

where

g. gI (v) (13)

The input-output relation represented by the function gi is

the non-linear "sigmoid" function

1
(0) = (14)

where X is the learning rate, a coefficient which determines

the slope of the linear portion of the sigmoid function.

Figure 3 is a plot of the function for X=O.l.

15



Sigmoid Function for lambda.1
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Figure 3. Sigmoid Function for X = 0.1
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For the purposes of determining stability the energy

function from Equation (9) now becomes

E=- • W1 +V±V- (V) dV + 1zv± (15)

The derivative with respect to time is

dE N~ d - +1 (16)

Substituting Equations (12) and (13) into Equation (16),

Since gi-1 (Vi) is a monotonically increasing function and Ci is

positive, then all terms in the right-hand side of Equation

(17) are positive and dE/dt is negative. If dE/dt - 0, this

implies that dV1/dt = 0 and the neuron is not changing state,

so a minimum energy has been reached. Hopfield's stability

proof, however, is not too convincing as the energy function

in this case is not necessarily bounded and can, under

circumstances to be shown, diverge.

r. THE NOPFZELD NETWORK VOR PARAMTER 6IDNTIFICATION

Hopfield's method of modelling his network as the

minimization of an energy function was adapted by Shoureshi

and Chu (Ref. 4] for use in minimizing the equation error for

system parameter identification. This has far-reaching

17



application to the control system field because having full

kndwldge of a system's dynamics in the form of parameter

identification is essential for stable control, and leads to

adaptive systems if parameters change.

The state-space form of any continuous system is

represented by

A(t) -AX(t) +Bu(t) (16)()UCx (t),

where i(t) is a vector of system variables, or states; A(t)

is their time derivative vector, U(t) is some vector of time-

varying inputs to the system, and £(t) is a vector of

measurable outputs from the system response. The coefficients

A, 3, and C, are matrices which define the physical

characteristics of the system. These matrices may depend on

time, but will be modeled here as time-invariant. The equation

error associated with incorrect estimates of the parameters

when U(t), .4(t), and *(t) are fully measured, becomes

A£)(t) -Ax_(t) -Iqu(t) (19)

The goal of successful system identification is to minimize

the error between the estimated and actual system parameters.

A convenient method is to minimize a positive-definite

function defined as the square of the equation error of the

system. Such a function might be

18



J = tr[E {@_(t) • . (t)})] (20)

Because of the time-variance of 6 (t), expected values are used

to formulate J, and the trace of the matrix of error values is

taken as an average of the total error. Thus, after

substitution of Equation (19) into (20)

J-E {V' (H/H)V- 2VIH'* + 'x (21)

where

Nudiag {x1 (t), u' (t)}, i=1,n; NeRnx(nl +nr) (22)

and

VI - (a,, b1, ... ai, b, ... an, b ]  (23)

and ai, bi are the ith rows of A and D.

A conceptual and mathematical similarity between J and the

energy function E of Hopfield's papers can now be seen. The

point is to minimize the error function J to produce a least-

squares equation error of the continuous control system, much

as Hopfield showed that his network minimized the energy

function E. Furthermore, identification of the proper system

parameters requires that minimization of J be conducted with

respect to the vector of neuron outputs V. Calculating that

partial derivative yields

E { (H') V}- E {'£} (24)
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At this point, a direct connection is made between the state-

space form of the system dynamics and the, Hopfield model.

Equating Equation (25) with Equation (12) and assuming Ri-400

and Ci=l,

d~i (25),1 W -...- Ili

Now, in comparing Equations (25) and (24) it can be seen that

W - -E { (N'N)) I =E { ('*)) (26)

The secret off system parameter identification using the

Hopfield model is revealed by Equation (23) to be the steady-

state solution of the network. Further, the performance index

gradient in Equation (24) is contained in the time derivative

dO/dt.

Though the association between the adaptation of the

Hopfield network for system parameter identification and

Hopfield's own proof of the minimization of a bounded energy

function has been shown, it can not yet be said that stability

for the new formulation has been proven. This proof is

contained in Appendix A and is based on showing the

minimization of the positive-definite function J. The proof

shows that the time derivative of J is always negative and

therefore J will always seek a minimum value.

It is now clear that to use the Hopfield model for system

parameter identification, one must collect all of the state

variables of the system response, as well as the input, and

20



use them to formulate the Hopfield weight matrix N and bias

matrix I. Then, one need solve the system of first-order ODE's

of Equation (25) for the vector V. The solution obtained for

V will, by definition, be a vector containing the elements of

the A and B matrices of the state-space form of the system,

and system parameter identification will be achieved.

Figure 4 is a block diagram showing this process. The

"Averaging System" is a routine which accepts the time history

of the system input and its state-space responses and

formulates matrices N and I averaged over a certain time

interval. This process was developed as a result of knowledge

gained from experimentation and is explained in greater detail

in the next chapter. The bias, matrix I is added to the

negative product of the weight matrix W and the vector of

previous neuron outputs V. This sum is multiplied by a scale

factor "sl" to speed the response of the system and the result

is a time derivative which, when integrated, yields a vector

of the weighted summation of inputs from all other neurons.

This vector is operated on by the non-linear activation

function g to produce the output of the current neuron.

The following chapters in this thesis present the results

of extensive experimentation with the theory of system

parameter identification using the Hopfield network. Using a

test case for a simple, time-invariant, second-order system

where the response and the parameters are known, the Hopfield

model is implemented in computer software to solve the
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X(t) lk(t) u(t)

Figure 4. Block Diagram of Continuous Bopfiold Network
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characteristic system of first-order ODE's. Experiments are

conducted using both linear and non-linear threshold functions

g, and the issue of stability of the network is thoroughly

explored. As an attempt at a more realistic scenario, the

performance of the network is evaluated when the system

response is not completely known, that is, not all state

variables are measurable. Finally, in a case that would most

certainly arise in the operating environment of NPS AUV II,

parameter identification accuracy is evaluated when the

parameters themselves change with time.
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III.- RESULTS OV TIE HOPFIZLD SIMULATION

A. INTRODUCTION

In this thesis, the theory of Shoureshi and Chu [Ref. 4]

using the Hopfield algorithm for parameter identification has

been applied to a known, second-order system herein referred

to as the "test case." This test case is the same as that

investigated in (Ref. 4] but the solutions have been found

completely independently. The purpose of this exercise is to

investigate the important aspects of the Hopfield algorithm as

related to global stability, speed of convergence, most

efficient formulation, and accuracy in identifying known

parameters. This chapter provides a detailed analysis of this

test case and results of the Hopfield formulations using both

linear and non-linear transfer functions,, the non-linear

function being exclusively the so-called "sigmoid" function.

B. LINEAR TRANSFER FUNCTION

The test case system chosen is an oscillatory , second-

order system with both states excited by the input signal,

u(t). The matrices of constant parameters are

[.94248 12.566] B=10 (27)
A= 2.566 -.94248 2 .0
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The equations for the system in state-space form are written

as follows.:

{l= { + [513] (u)8)

where u=sin(t) is the system input. This input function was

chosen to produce persistent, system excitation. Figure 5 is

a plot of the state variable response of this system along

with the input u for initial conditions arbitrarily chosen as

Xo=[1 1].

Appendix B contains the computer code for this problem

formulation, implemented using MATLAB software. The first step

in the main program, called "neu," obtains an appropriate time

history for the two state variables and their time derivatives

from which the weight and bias matrices, W and 1, are formed.

This step is necessary because this approach to system

identification requires measurement of x, L, and 2. For this,

a Runga-Kutta second- and third-order numerical integrator,

provided by the MATLAB software, generates response data for

the system of two, first-order, ordinary differential

equations (ODE) making up the state-space formulation. The

subroutine "system" contains the state-space equations where

A is the dynamics matrix and B is the gain matrix. The MATLAB

numerical integrator, a subroutine called "ode23," operates on

these equations given the time interval specified by "to" and
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"tf", and by the initial conditions "xo". For this formulation

to=OiO, tf=l.0, and xo=[l 11. Subroutine "ode23" chooses non -

constant time intervals based on the speed of convergence of

the solutions and returns the values of _t, xj, and x.

A loop in the main program reintroduces these values for

, _I , and x, into the subroutine "system" to obtain the

corresponding time derivatives of x a and x2, designated f1 and

. The input a=sin(t) is calculated given the time steps

provided by "ode23." Program "neu" formulates the matrices W
and I from the time histories of x, x, --i -2' and u, as

presented previously. As the main program was first written,

W and I were formulated for each time step, but this quickly

proved to be unworkable as W is a singular matrix for each

time step. As such, W 1 does not exist, so the steady state

solution

v,- -- '  (29)

likewise does not exist.

To investigate this problem further, N was formulated as

the average for each time interval of state variable

measurement and the upper singular values (usv) of the

eigenvalue pairs were calculated and plotted. Figure 6 is a

plot of the usv's of the eigenvalues of N versus the number of

time steps used to formulate W before averaging the elements

to obtain a final W. Each curve shows a pair of singular

values (the matrix is symmetric) and it can be seen that until
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the number of aieraging steps exceeds 30, one pair of

eigenvalues is too close to zero to ensure the stability of

the network solution. From this point on, 50 was taken a's the

appropriate number of time steps over which to average W. An

optimization of this problem was not attempted but might be a

subject of future research. To check that this was an

acceptable formulation for W, the steady-state solution for

the system parameters, Equation (29), was calculated for each

time step of the state-space response. Figure 7 shows a plot

of this steady state solution and it can be seen, as expected

when the input signal is free of noise, that within three time

steps the proper 0,, is returned. Note that in the figure, as

in the computer code, 9 is denoted "th."

Once the proper number of averaging steps was determined,

it was necessary to reset the vectors for t and x to contain

pnly that number of elements. The main program, as currently

written, cycles these re-sized vectors through the subroutine

"system" to obtain their corresponding time derivatives in the

matrix f. With this information the matrices N and I are

formulated by multiplying these column vectors of x, f, and u

as specified to produce each individual element, which in turn

is divided by 50. What results is a 6X6 weight matrix W and a

6X1 bias matrix I which are averaged for the system state over

roughly the first one second of time.

Subroutine "hop2" contains the Hopfield algorithm and

comprises the next phase of the computer code. Program "neu"
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calls "hop2," entering with W and I and integrating the series

of six, first-order, ODE's to produce a solution contained in

the vector 0. As before, the equations of the system are :

d i  (30)
_a- - _ wijvj + i

The linearity of this particular system lies in V, which for

this first test case is represented by:

Vme (31)

A scale factor, sl=50, multiplies W and I to increase the

response speed.

Program "neu" uses a simple Euler integration, where it

was determined by experimentation that dt=.02 produced

acceptable convergence of the solution to the final values of

0 provided integration was carried out over 100 steps. As will

be discuised in the section on non-linear transfer functions,

it was discovered that the actual, desired solution for the

system parameters is returned in V, not 0. This was overlooked

at first because of the constraint imposed by Equation (31),

which essentially means that there was a unit transfer

function for the linear case.

Figure 8 shows a plot of each individual element of 0

normalized with respect to the actual system parameters versus

the non-dimensionalized time of Euler integration. It can be

seen that all elements converge to the expected values within

eot=20. Figure 9 is a plot of the normalized 0 vector and
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shows that convergence to the actual system parameter vector

e0 occurs within wot=15.

C. NON-LINEAR, SIGMOID, TRANSFER FUNCTION

The case where the Hopfield network was implemented using

a linear transfer function has been thoroughly investigated.

It has proven useful for the purposes of exploring the

important aspects of stability associated with this problem.

In addition, the linearity of the system guarantees that a

solution will be obtained provided N is not singular. The non-

singularity of N is ensured by averaging over an appropriate

time interval.

The network as described is not strictly a Hopfield

network, however, because the linear transfer function does

not accurately model the response of a neuron. In Hopfield's

formulation [Ref. 6] the transfer function which converts the

output of each neuron is more accurately represented by the

non-linear sigmoid function in Equation (14) where X is the

learning rate and is positive but less than one. The plot of

this sigmoid function, Figure 3, shows its relationship to the

ideal step change from zero to one.

The sigmoid function is the basis for the next set of

experiments which were conducted with the test case used

previously. Initially, all parameters remained the same as for

the linear network. Additional parameters that needed

consideration were the learning rate, X, and the sigmoid
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function gain, G. Prior to conducting the experiments it was

not immediately apparent that G would be necessary, but its

eventual inclusion proved critical and will be discussed

further.

Figures (10) and (11) are two plots of the sigmoid

function which highlight the effect of varying X and G. It

should be noted that in order to duplicate, and closely

follow, the test case used in [Ref. 4), the form of the

sigmoid function was altered to

g (1) - G -2-1 (32)

In Figure 10, G is held constant at 1 while X is varied from

0.1 to 1.0. The function converges asymptotically to +1 and -1

for all X, but the slope of the linear portion of the function

increases dramatically with increasing X. Figure 11 shows X

held constant at 0.1 while G varies from 10 to 50. The

asymptotes vary directly with G with an equally dramatic

increase in slope as G increases.

Initially, X was set at 0.1. As the necessity of G was not

yet recognized, it was not included, effectively making G

equal to 1. Figure 12 shows the results of this run, revealing

that each of the coefficients in the system output vector, V,

converges within the range +1 to -1. Experiments with various

values for X, as well as expanding the time interval for
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integrating the network, proved fruitless in changing this

incorrect "solution."

The reason for this failure to converge to the expected

results with what was believed to be Hopfield's original

formulation became apparent once the network was analyzed

mathematically with g(e) included. This system formulation is

as follows:

dej-

Jul

As t -oo, (dO1/dt) -40, so

N ~j g (90 + 1, ="0 (34)

and

N

g(49). a (.[I) I, (

Note, however, that the right hand side of Equation (35)

returns the steady state values of the system parameters while

the left hand side by definition must vary between -1 and +1.

Thus, the output g(O) is constrained to converge to these

values. This response provided the clue that some gain

contained within g(E), which would extend the range of the

sigmoid function to encompass the expected values of the

system parameters, is required for the existence of a steady-

state solution.

39



When devising a method to determine the proper values of

G and X to use, it was decided to maintain the same unit value

for the slope of the linear section of the transfer function.

For unit slope, then, the derivative with respect to E of

Equation (32) must equal one at 0=0, or

[2 (-) (+e ) (-Xe "e)] (36)

and

ag 0 = 1 r-G[(-2 (2) -2 (-%)] (37)

so

1=G ()(38)
and

2 (39)

A value of G=15 was chosen to encompass the largest of the

expected values of the system parameters, resulting in

X=0.133, so these values were incorporated into the Hopfield

network. Figure 13 shows various plots of the sigmoid function

when unit slope is maintained according to Equation (39).

Appendix C contains a listing of the new computer code

incorporating the sigmoid transfer function for network

formulation. The main program, called "neu2sig," calls a

reformulated Hopfield network subroutine "hop2sig," and

integrates the series of equations where V now equals g((),
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the sigmoid function. As discussed previously, the system

parameters are returned in V, not 0, so a plot of the elements

of V, as the Euler integration proceeds, reveals the behavior

of the network as time advances. Figure 14 is a plot of the

separate elements of V normalized with respect to the

individual, expected values of the system parameters, A and B,

showing their convergence within wot=20. Figure 15 is a

similar plot, except that V is plotted as a vectok noimalized

with respect to the vector of expected system parameters. This

plot shows convergence to within cot=15.

D. REZMRKS

It has been shown that the Hopfield network algorithm can

be used to identify the parameters of a simple, time-

invariant, second-order system provided that the expected

values of the parameters lie within the range of values of the

non-linear transfer function used to convert the output of

each neuron. The application of this method to real-world

system identification is limited, however, by the necessity of

having all states of the system fully measurable. A more

realistic, and therefore more important, situation is one in

which at least one system state is not observable, meaning

this state must be estimated before the system parameters may

be identified. The next chapter details the formulation of a

Hopfield network for the current second-order test case, with
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the added complication that the state denoted x, is not

measurable.
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IV. PARAWTER IDENTIYICATION USING STATE OBSERVtS

A. INTRODUCTION

The need for observers in modern control system design

where one or more states can not be measured has been

thoroughl explored and documented. The original test case as

previously used is now adapted to the exploration of state

observation applied to the Hopfield network algorithm.

Although the full states have been generated previously and

are known, this Chapter examines the case where only the state

variable &2 is measurable, while A, must be estimated. This

estimated variable, denoted 9 , will be used with an estimated

variable .2 to formulate W and 1. Finally, it will be

determined if the Hopfield network will correctly identify the

original system parameters under these conditions.

B. FULL-STATE OBSERVER

For the exploration of this problem, the computer code

developed originally was left largely intact. However, the

subroutine "system," used previously to generate a time

history of the state variables, has been replaced with a

subroutine called "observer" which contains the code necessary

to create a time history of the estimated variables a, and 12.

Appendix D contains the pertinent computer routines for this

problem. Note that in the code & and 42 are contained in the
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matrix "xhat," while the time derivatives .4 and--2 are

contained in "xhatdot."

Subroutine "observer" now contains a system of four first-

order ODE's of the following form:

_ ( -[A] + (] (u)

1L-J 2J -(40)

{}= o-KCo]{ + (Bol u)+ (XCo]

The matrices A, and B, are the observer system parameters which

initially are set as exactly equal to the actual system

parameters A and B in Equation (27). The matrix C, is the

output matrix, which in this case is [0 1). The purpose of

this "perfect estimation" of the actual system parameters is

to see if the Hopfield network can correctly identify the

actual system parameters based on state variable data produced

by estimation. System identification through the use of an

observer when the actual system parameters can not be

accurately determined will be explored later in this chapter.

The feedback gain matrix K, which is the key to minimizing

the error between the actual and estimated states, is found

using the dual form of the linear quadratic regulator

subroutine 'lqr" provided by the MATLAB software. This

subroutine returns the optimal value of K such that the

feedback law
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u= -Kx (41)

minimizes the cost function

J= f(x'QX+u'Ru) dt (42)

For purposes of this solution Q was chosen to be an identity

matrix and the control weight R=.Ol, constrained by the state

equation

-w Ax + Bu (43)

The main program for this new problem formulation is

essentially the same as for the fully measurable system but

was renamed "neuobs." For the sigmoid function X=0.1 and G=20,

which were found to give slightly faster convergence of the

solution to the expected values. The major difference in this

main program is that N and I are calculated using .a' .' '

As before, the final solution is returned in the elements

of the vector V.

Figure 16 shows the convergence of the elements of V to

the expected values of the actual system parameters. The speed

of convergence is essentially unchanged from that of the

previous system where all states were measurable, as shown by

the convergence of all within the non-dimensional time value

(0t=20. Figure 17 shows the normalized vector i Vil; again,

the convergence rate is very close to that of the fully

measurable system.
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The next step in exploring the observer problem was to

determine if the parameters of the system could be,

successfully identified for that case where the actual system

parameters were not accurately known. For this phase of the,

problem the following observer matrices were chosen as initial

estimates which differ substantially from the actual

parameters of the test case:

Figure 18 is a plot of the resulting solution vector, V, where

each element has been normalized over the expected value of

its corresponding system parameter, and it shows that the

network does not converge to the expected values of the actual

system parameters. Table II shows the actual values of the

system parameters, the values of the imperfectly estimated

system parameters, and the steady-state solution of the

network using the observer. It can be seen that the steady-

state of the network returns something close to the value of

the estimated parameter for V,,(3) but all other values differ

substantially from either the estimated or actual system

parameters. Since this data is inconclusive, Figure 19 was

generated which is a plot of the actual and estimated system

state responses. This plot shows that the estimation of x, and

x2 begins to deteriorate rapidly at about t=0.7 and becomes so

severe that it may indicate the presence of instability in the
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TABL 1I. COMPARISON 13WMN ACTUAL SYST M PARANMTERS
AND SOLUTION USING FULL-STATZ OBSERVER

A, B Ao, Bo V.

- 0.9425 - 0.7000 - 1.1368

12.5660 10.0000 13.32.63

-12.5660 -10.0000 -10.0132

- 0.9425 - 0.7000 - 0.5991

1.0000 2.4400 9.8516

2.0000 1.3900 1.6147

observer. The inability of this system to produce an accurate

estimation of the system response, which leads to inaccurate

identification of system parameters, reveals the need for

additional study into a method for minimizing the estimation

error of the system response before formulation cf the weight

and bias matrices. Such a study was not conducted for this

thesis but is deemed essential before implementation of a

Hopfield network in a real-world application.

C. RZDUCED-ORDER OBSERVER

The previous section dealt with the full-state observer

applied to the Hopfield network, where the estimation of the

entire state was returned if even one state variable in a

multi-variable system was not measurable. As noted in

Friedland [Ref. 14), however, it was desirable to formulate an

observer which need only return estimation of those state

variables not actually measured while omitting the need to
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estimate variables already known. A reduced-order observer was

used for this purpose of creating a time history of the state

variables for the Hopfield network test case.

Friedland presents two methods of formulating the reduced-

order observer depending on the nature of the eigenvalues of

the submatrix A22. For the first method, the eigenvalues of A22

must be known to be negative, or that the real parts of the

poles of this submatrix lie in the left half-plane

sufficiently far from zero to ensure stability of the system.

In this case, the equation to estimate the unmeasured

variables is quite straight-forward and takes the form

-A21C_1 +A22 2 +B. (45)

However, when the eigenvalues of A22 are not known or if A22 is

not stable, Friedland presents a more general method to

estimate the unmeasured states. This second method was not

needed for the test case examined in this thesis and it is not

anticipated to be necessary for application to NPS AUV II, so

its formulation has not been developed here.

Appendix E show: the computer code for the chosen observer

method. The modified subroutine "observer" contains a system

of three first-order ODE's consisting of Equations (28) and

(45) adapted to estimate R,. The main program "neuobs" selects

x2 and R,, retrieves L2 and 9, from the subroutine "observer,"

and uses them in formulating W and I. From there the network
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algorithm continues asbefore. Figure 20 shows the individual

elements of V as they converge to the expected values of the

system parameters with a speed comparable to that of the fully

measurable system.

As with the full-state observer, experiments were

conducted where the system parameters were imperfectly

estimated as being those from Equation (44). Figure 21 shows

that once again, the network solution converges to values

substantially different from the actual system parameters as

shown by the comparison in Table III. For the situation where

x2 is measurable but x, is estimated, the steady-state solution

of the network converges to the imperfectly estimated

parameter values A(1,1), A(1,2), and B,(1). For the other

three solution vector elements, convergence to some values

close to neither the actual nor estimated parameter values has

TABLZ II. COMPARISON BETWEEN ACTUAL PAIRfMU RS AND

SOLUTION FOR REDUCED-ORDER OBSERVER

A, B A0, B0

- 0.9425 - 0.7000 - 0.7000

12.5660 10.0000 10.0000

-12.5660 -10.0000 -14.5529

- 0.9425 - 0.7000 - 1.5149

1.0000 2.4400 2.4400

2.0000 1.3900 12.6629
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Normalized Solution V ector for Reduced-Order Observer
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Normalized Solution Vector for Imperfectly Estimated Parameters
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Figure 21. Normalized Solution Vector for Imperfectly
Estimated Parameters, Reduced Order
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resulted. Figure 22 is a plot of the system response for the

observer network and it shows that the estimation of x, is not

very accurate following, t=0.2. Again, this may indicate

instability in the observer system and, at least, requires an

additional algorithm to minimize the estimation error before

formulating W and I.

D. RI3&KS

In this chapter the use of full-state and reduced-order

observers has been explored for use with the Hopfield network

for cases where the states of a system can not be fully

measured and, therefore, the weight and bias matrices, W and

I, can not be formulated based on actual system states. The

need for a means of estimating certain state responses before

implementing the control laws for the NPS AUV has become

apparent early in it's design. When the surface dynamics of

the vehicle are considered, it is found that two of the

necessary system states, yaw rate r and heading angle V, can

be easily measured with onboard sensors. However, the more

subtle system state called side slip v, is not so easily

measured. For this situation it is desired to adapt an

observer which will estimate v with an acceptable degree of

accuracy. As shown in this report, however, an accurate

observer can not be developed unless there is full knowledge

of the vehicle's system parameters, which are nnt now k'own

and will most certainly be variable in the course of vehi-cle
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Actual and Estimated System Responses
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Frigure 22. Actual and Estimated Responses, Reduced Order
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operation. Since the purpose of this adaptation of the

Hopfield network is for identification of the system

parameters, clearly the use of an observer will be

problematic.
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V. TRACKING OF VARYING SYSTEM PARAMETERS

A. INTRODUCTION

An important situation to pursue in the study of system

parameter identification is that of tracking and correctly

identifying system parameters as they vary during system

operation. Applied to the case of the NPS AUV II, such a

situation may arise when one of the vehicle's control surfaces

is lost or damaged. In this case, the dynamics of the vehicle

would certainly change and, in order for the vehicle to

continue to operate, the mission controller would have to

compensate for these alterations and continue to function as

specified. To do so, however, it must have the capability to

accurately track the parameter variations in a timely manner.

In this chapter, the ability of the Hopfield network to

track and identify such varying parameters is explored. For

experimentation the test case in modified form is used where

all states are assumed to be fully measurable. Simple step

changes are imposed on one of the gain parameters, in this

case (B(1)], and the results are plotted and examined.

B. RESULTS

Appendix F contains the code for tracking this system

parameter. Subroutine "system" shows step changes implemented

as simple "IF-THEN" statements, where [B(1)] varies once each
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second from t=0.0 to 5.0. As before, the system response in

terms of its state variables is produced using the MATLAB

integration subroutine "ode23."

The main program "neuobsl" divides the time history into

one-second intervals corresponding to the step changes, then

reads the state variable values over those intervals. The

state variables are used to formulate intermediate W and I

matrices, averaged over the number of time steps within each

interval, and the Hopfield network's system of ODE's is

integrated using subroutine "hopobs" to produce a network

solution corresponding to that interval of time. Once all

intermediate network solutions have been generated, they are

assembled into a global solution covering the entire five-

second time period. Figure 23 shows a plot of [V(5)], which is

the element of the network solution which tracks the parameter

of interest. Overlaid on the plot is the actual variation of

(B(1)], which allows the speed and accuracy of the convergence

of the solution to be examined. The figure shows that for the

first three seconds of time, the solution tracks the parameter

values after converging within qot=50. This speed of

convergence is much slower than for the case when the

parameters remain constant, which for all experiments was on

the order of cot=20.

Most importantly for this network solution, it can be seen

from the figure that during the fourth, one-second time

interval the error in the tracking element is unacceptably
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Tracking of Varying Gain Parameter [B(I)]
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Figure 23. Tracking of Varying Gain Parameter [B(1)]
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large and, in fact, the network has not achieved convergence.

to any value within cot=200. Following this discrepancy,

during the fifth time interval, the speed of convergence and

accuracy of the solution return to that noted for the first

three time intervals. The behavior of the solution during the

fourth time interval presents a serious lapse in the

performance of the network and must be studied more closely.

The data for this network solution is presented in Tables

IV and V in order that the performance of the network during

the fourth time interval may be more closely studied. The

eigenvalues of the weight matrix W shown in Table IV reveal

that for the fourth time interval, two pairs of poles are

extremely close to zero relative to the other pair and to the

pairs of poles for the other time intervals. In addition, the

small error found in the solutions for the other time

intervals is also a product of lack of sufficient excitation.

For the parameter tracking problem it was difficult to ensure

that W would be averaged over the correct number of time steps

because the subroutine "ode23" is a variable-time-interval

integrator. This problem was not fully explored but should be

a subject to pursue in future research involving parameter

tracking.

Table V shows that the steady-state solution for the

network element [V(5) ] in the fourth time interval is equal to

0.1458 which is not at all close to the expected value for

[B(1)] of 0.5. The reason behind this isolated discrepancy in
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TABLE IV. NIGENVALUES OF W WHILE TAMCKING [B(1)]

TIME EIGENVALUE PAIRS
INTERVAL

0.0 - 1.0 .4024 .5014 .2679

1.0 - 2.0 .1347 .0902 1.1047

2.0 - 3.0 .0977 .0475 .7208

3.0 - 4.0 .0035 .0025 .2478

4.0 - 5.0 .0279 .0291 1.0183

TABLE V. STEADY STATE VALUES OF V (V,, = W-* I)

-.9044 12.5960 -12.5660 -.9425 1.1319 2.0000

-.9120 12.7052 -12.5660 -.9425 5.1165 2.0000

-.9310 12.5098 -12.5660 -.-9425 9.9439 2.0000

-.5725 13.5320 -12.5660 -.9425 0.1458 2.0000

-.7734 12.1978 -12.5660 -.9425 -4.7667 2.0000

network performance lies in the fact that during the time

interval in question, the gain parameter being tracked lies

close to zero. During this period, the system is not being

persistently excited to the extent necessary for the

formulation of an appropriate W, which instead tends toward

singularity. In this case, the network can not be expected to

converge to the proper solution. An attempt was made to

examine an alternate method of integrating the system to

produce the state response. Instead of the variable-time-

interval Runga-Kutta algorithm of "ode23" the system was

integrated using a linear, time-invariant, time-response
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algorithm with the system converted to discrete form. This

method did not produce results substantially different than

those shown in Tables IV and V.

It can be seen that in order for this network formulation

to be used successfully under conditions of varying system

parameters some adjustment in the software must be designed to

guard against insufficient excitation by the system. It is

apparent that test signals need to be defined to ensure

suitable conditioning of W. A set of persistently exciting

input functions could be stored which would be designed to

maximize the singular values of W, which could be called by

the vehicle's mission planner in order to optimally "test" the

vehicle's behavior.
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VI. SUHMARY AND CONCLUSION

A. SUMMARY

At the center of the Naval Postgraduate School's project

to produce an Autonomous Underwater Vehicle (NPS AUV II) is

the Mission Planning Expert System (MPES), a hierarchical

system to control all operations of the vehicle while

executing its planned mission. An important part of

implementing such an expert system is mapping and successfully

incorporating knowledge of the vehicle dynamics into a

comprehensive vehicle control algorithm. One way of achieving

this goal is through the application of Artificial Neural

Networks (ANN) to identification of the state-space form of

the vehicle's system parameters.

This thesis has focused on the application of the

continuous form of the Hopfield network to system parameter

identification. In its original form [Ref. 5], Hopfield

presented his network as a discrete-time model of a set of

biological neurons, each of which computes the weighted sum of

the outputs of all other neurons, including its own, then sets

the output to zero or one depending on whether it is above or

below a set threshold value. In a subsequent paper [Ref. 6],

he presented a continuous form of the model based on the

operation of an electrical RC circuit. In that model, the
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relation between the output of a neuron, termed its state-, and

the weighted sum of its inputs plus a bias value, was

characterized by the non-linear sigmoid function, which he

felt bears a superficial resemblance to the manner in which a

biological neuron changes states.

For both models Hopfield sought to prove the network would

always converge to a unique set of outputs based on a distinct

pattern of inputs. To do this he likened the network to a

bounded energy function which, as each neuron changes state,

is monotonically decreasing and eventually seeks a minimum

value.

Shoureshi and Chu used'this idea of the minimization of an

energy function while studying the problem cf dynamic system

parameter identification. Their work forms the basis of this

thesis, which is a detailed study of the Hopfield network for

parameter identification with a view toward implementing it

into the control system of NPS AUV II. A linear, time-

invariant system was chosen as a test case to see if the

outputs of a Hopfield network would converge to the known

system parameters, given that the weight and bias matrices, W

and 1, are formulated from the system response as shown

herein. As the stability of the network in this form was also

of major concern and not directly inferable from the Hopfield

stability proof, a proof of stability was completed and is

contained in Appendix A. Numerical experiments were conducted

first with the system states fully measurable, then with the
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incorporation of observers to estimate one state variable, and

finally assuming the states were fully measurable but one

parameter was varying with time.

B. CONCLUSION

It has been show that

1. Hopfield networks can solve function minimization
quickly in real time and, in particular, can perform
system parameter identification.

2. The formulation of the weight matrix W was not possible
for each individual time step because the matrix was at
first singular, meaning that the steady-state value of
the system, which involves the inverse of W, did not
exist. By examining the eigenvalues of W for each time
step it was determined that acceptable performance was
obtained when the state response, used to formulate W,
was first averaged over 50 time steps.

3. Integration of the network following formulation of the
W and I matrices revealed that the outputs did converge
to the actual values of the system parameters.
Convergence was speeded up to within 2 cycles of the
natural frequency by introducing a scale factor of 50
to multiply W and I.

4. For the network to identify the actual system
parameters, the range of the non-linear sigmoid
function must encompass the parameters' expected
values.

5. Imperfect estimation of parameter matrices when using
full-state and reduced-order observers produced
unacceptable system-state estimation error which led to
incorrect formulations of N and I and inaccurate
network solutions.

6. The network exhibited an acceptable ability to track
significant changes in system parameters as time
progressed. When the varying gain parameter [B (1)]
dropped to a value close to zero, however, the system
was not being persistently excited and the solution
performance degraded drastically. Inaccuracies in
tracking over all time intervals pointed out the need
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for persistent excitation by the test signal to ensure
that N is well-conditioned.

C. REZCONNDATIONS

The following topics are presented for possible future

research:

1. The number of time steps in the respon- of the system
over which to average W and I should be optimized to
minimize the network solution time.

2. A routine should be included with the sigmoid function
to ensure that its range will always encompass the
expected values of the system parameters without being
excessively large.

3. Performance of the network should be investigated when
the system input signal contains random noise.

4. The value of the gain Sl should be optimized to ensure
maximum speed of convergence of the network solution.

5. Additional experimentation with Hopfield networks and
observers should be conducted including routines to
minimize the error in system state estimation.

6. Practical issues in test signal amplitude and frequency
content need to be addressed to ensure the appropriate
condition of W.

7. Hopfield networks should be implemented for
identification of the actual operating parameters of
NPS AUV II.
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APPENDIX A
PRoof Or STABILIft Or TIM 3op0ZZL TW

FOR PA A MTR IDZTIFICATIO

In the system identification problem, the estimation of
erroneous parameters leads to an equation error of the kind,

*j (t) - W(t) Vj -*j (t) ; aJ1, n

in which the system model and the parameter vector so formed

are obtained as follows.

System equation: *(t) MAX(t) +Bu(t) ; y(t) -C x(t)

Parameter vector definition:

V (t) - ... a, b,...J i a 1,n e 91nSn

where ai and b± are the it h row of the system parameter
matrices, A and B. If the measurement matrix 3(t), is defined
as,

.X, (t) U, (t) ... 0 ... .. .0 .

a(t) M ... 0... X, (t)U' (t) .. .0... I; e5 in(n" r)

... .. ... 0... X'(t)u'(t)J

this leads to

(t) -H(t)V(t)+e(t)

in which the errors e(t) account for measurement noise and
errors due to parameter mismatch.

Definition of a positive definite averaged error squared

energy function, J, leads to
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and in terms ,of the parameter set V(t),

J- A{[ RI(t)V (t),-*.,(t-) ]'[l~ :)" t

giving

Ji =' (t)A(N' (t) IR (t)V(t) - 2V' (t)A (3' (t)*1' (t) + A [ (t)*(t)]

Since J is a positive definite function of V(t), convergence
of parameters to a stable set in which J is minimum is
guaranteed if its time derivative is negative.

The required stability condition is then,

"J (t)4(t)<O V V(t), t, 0,-]

Such a condition is met if,

u-sgn (~
The Hopfield network can be shcwn to meet that condition

since,

aJ-A[jV(t)R(t) ]V-A([I(t)*(t) I

or,

aJ -NV-I

where, W=A[W'(t)z(t) ] , and I-A ['(t)t(t)

Defining aj (t) -d leads to the synaptic excitation

equation of Hopfield,
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dO - 4ith Vzg()

g(e) is always increasing as (e) increases (i.e. g(() lies in

the 1st - 3rd quadrant in the 0 - V plane), then 4g' (0) d

with g' (0), always positive. The result demonstrates that J
will seek a minimum as

V(t) a-g/ ((t)) (t)

which meets the stability condition shown.

UZALIZATION 07 THU SOLUTION

In spite of the above, convergence of dO/dt to 0 as t
progresses does. not always lead to convergence of V(t) to the
correct parameters, and one additional condition is necessary
to impose.

Assume that (ki-4[-00,ee] and define,

gx=lim g(0) as 0 -. o and gij-lim g(0) as 0 -- oe

Define V,, as the steady-state solution of V(t) as t become
large.

Define 0,, as the steady-state solution of 0(t) as t becomes
large.

It follows that unless

gmin < V~s < gmax

a steady *tate solution for V does not exist. The point is
illustrated in Figure Al.
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Figure Al. Range of g, use)
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APPENDIX B
NUIN PROGRAk VOit NIOIIIZ NUT WORK

WiTB LINAM, ACTIVIiON PONCTION

% Main Program for Hopfield network with linear activation
% function

%program neu

to=O; tf=1; xo=(1 1);
[tnew,xnewj =ode23 ('system' ,to, tf, xo);
nl=50;-
t-tnew(1l:nl);
x-xnew(1:nl,:);

for i=1:nl
(ff]=system(t(i),x(i,:)); fi)=f;end;

umisin (t) ; f=f'/nl;

xx2=x 0 ., 2.) 1*x (: 2) /ni;
xxl2=x:, 1) 1*x (:.,2) /nI;
xlu=x (:, 1)'1 *u/nl;
x2u=x (: ,2)' *u/nl;
uu=u' *j/nl3;

*%Calculate average values for weight and bias matrices

W=zeros(6,6)'; I=zeros(1,6);
W(1,1)=xxi; W(1,2)=xxt12; W(1,5)=xlu; W(-2,5)=x2u;

W (3 j 6) =W (1 j5) ;
W(4,3)=W(2,i) ; W(4,4)=W'(2,2); W(4,6)=x2u,; W(5,1)=W(115);
W (5, 2) =W (2, 5) ;
W'(5,5)=uu; W(6,b---UU; W(6,3)=W(3,6); W(6,4)=W(4,6);

I ()=x:,i)~ *(: );I.(2)=x(:,2) *f(:,1) ; I (3)=x(:,.1)I*f(:,2);
I(4=xi,2)*f(,, );I(5)=uI*f(:,i); I(6)=uI*f(:,2);

% Iperform Euler integration on the Hopfield network
% algorith..

cit=.02; int=100; sl=50;
tho=ejnes (1, 6);

fo~r i=2:int;
[thdot]=hop(W,I,tho,sl);
th~thdot*dt+thoI;
tho=th'; thpL (i, :-)=tho;
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end;
theta=ft-.9424,8 12.566 a-12.566 -. 94248 1 2],;
thvec=sqrt (theta~thetal);
for i=!: 100;

tvec (i)=dt*i;
thplvec (1), ".qrt (thpl (i,) *thpl (i, 4

end;
wo~sqrt (.94248A2+12 .566^2,);
plot (wo*tvecethplvec/thvec);

%Subroutine containing Hopfield algorithm

%program hop

function (thdot) =hop (W, I,th, si)

for i=1:6
V(i)=th(i);

end;

V=[V(1) V(2) V(3) V(4) V(5) V(6)]1;
thdot= -s1*W*V+s1*II;

%Subroutine containing state-space formulation of test case

%program system

function [fJ =system (t, x)

u=sin (t);
A=[-.94248 12.566;-12.566 -.9424-8]; B=(1;2];
fl=A(1, 1) *x(1)+A(1,2) *x(2)+B(1) *u;
f2=A (2,1) *x(1) +A(2,2) *X(2) +B (2) *u;
f=(fl f2];
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"AIPZNDIX C
IIN PROGMW FOR NOPFYZUW NETNORK
WITI SIUOID JLCTIVATION FUNCTION

% Main Program for Hopfield network with sigmoid Activation
% function'

% program neu2sig

to=O; tf=1; xo=[1 1];
[tnew,xnew)=ode23-('Isystem' ,tortfxo);
nl=50;
t=tnew(1:nl);
x=xnew (1: nl ,:

for i=1:nl
(ff]=system(t(i),x(i,:)); f(ij:)=ff; end;

u=sin(t); f=f/nl;

xxl=x (:,11)'1 *x (: ,I) /n;

kxl2=x(:,1) I*x(:,2)/hl;
xlu=x (:,'I I4 *u/nl;
x2u=x (,2-)' *u/nl;
uu=u' *u/ri3;

% Calculate average values for weight and bias matrices

W=zeros (6,6); I=zeros (1,6);
W-(1, 1)=xxl; W(1, 2)=xxl2; W(i,5)=xlu; W(2,5)=x2u;
W (2, 1)=W (1, 2) ; W(2,2)=xx2; W(3,3)=xxl; W (3, 4) =W(1, 2)-;
W(3,6)=W(1#5) ;
W(4,3)=W(21l); W (4, 4) =W(2, 2); W(4,6)=x2u; W (5, 1)=W (1, 5);
W (5, 2) =W (2, 5);
W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);

I(4)x(:2)I~(:,) ;I(5)=uI*f(:,l); I(6)=u*f(:,,2);

% Perform Euler integration on the Hopfield network
% algorithm.

dt=.02; int=lOO.; sl=50; lmda=O.1; G=20;
tho=ones (1, 6);

for i=2:int;
[thdot,V]=hop2sig(W,I,tho,sl,lmda,G);
th=thdot*dt+thol;
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end;
thata=[-.94248 12.566 -12i,566 -.94248 i 2],;
thvec=sqrt (theta *thetAf);
for i=l:'6;,

end;
wo=sqrt (.94248 A2+12.566 A2);
'plot (wo*tvec, VVpl);

% Subroutine containing.Hopfield algorithm

% program hop2sig

function(thdot,V]=hop2sig(W,I,th,sl,lmdak,G)

for i=1:6
V (i) =G* (2/ (1+exp (-lmda*th(i1) )-1);

end;

V= (V(1) V(2) V (3) V (4) V (5) V (6)]'
thdot=-s1*W*V+s1*II;

%Subroutine containing state-space formulation of test case

%program system

f unction ( f ) =system (t , x)

u=sin (t);
A=[-.94248 12.566;-12.566 -.9424B8]; B=(1;21;
fl=A(1, 1) *x(1) +A(1, 2) *x(2) +B(1')*u;
f2=A (2, 1)x(1) +A (2, 2)*x(2) +B (2)*u
f=[fl f2');
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AkPPENDIX D
WU*N PROMMI FOR NROPYZELD NETWORk
WITH SIGNOID 'ACT IVATION FUNCTION

AND FULL-STT OBSERVER

%Main Program for Hopfield network with sigmoid activation,
%function and full-state observer

%program neuobs
%Development of state variable time history

to=O; tf=1; xo=[1 1 1 1),;
Etnewlxnew]=ode23 ('observer' ,to,tf,xo);
n1= 5 O_;
t-tnew,(l:nl);
x=xnew(l:nl,:);

for i1l:nl
(ff)=observer(t(i),x(i,:)); f(i,:)=ff; end;

u=sin (t) ;' f=f(:3:4) /nl;

xxl=x (:,3)' *x (:,3)/ni;

xxl2=x (,3) 1 *x (: 14) /nI;
xlu=x (: :3)'1 *u/nl;
x2u=x(0, 4) 1*u/nl;
uu=u'*u/nl;

%Calculate average values for weight and bias matrices

W=zeros (6,6); I=zeros (1,6);
W(l,1)=xxl; W(1,2)=xxl2; W(1,5)=xlu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3,3)=xxl; W(3,4)=W(1,2);
W(3,6)=W(1,5) ;

W (5, 2)=(2, 5);
W(5,5)=uu; W(6, 6)-uu; W(6,3)=W(3, 6); W(6,4)=W(4, 6);
I(l)=x(:,1)'*f(:,1); I(2)=x(:,2)'*f(:,1); I(3)=x(:,1)I*f(:,2);

% Perfo~rm Euler integration 6n the Hopfield network
% algorithm.

dt=.02; int=100; s1=50; lmda=0.l; G=20;
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tho=teros (1,-6);
for i=2:int;,

[thdot,V]---hopobs (W, I, tho,si, linda, G);,
th"-thdot *dt+thof;

end;
theta=[-.94248 12.566 -12.566 -.94248 1 2'1;
thvec=sqjrt (theta*theta');
for i=1:6;

VVpl (:, i) =Vpl (:, i) /theta (i);
end;
wo=sqrt(.94248,"2+12.566'12); plot(wo*tvec,VVpl);

%Subroutine containing Hopfield algorithm

%program hopobs

function (thdot,V] =hopobs (W, I,th, silinda, G)

for i=1:6
V(i)=G* (2/ (1+exp(-!.lmda*th(i)) )-1);

end;

V=f((1) V(2) V(3) V(4) V(5) V(6)11;
thdot=-s1*W*V+s!* I';

% Subroutine containing state-space formulation ~of test case

% and full-state observer

% program observer

function [f] =observer (t, x)

u=sin (t);
A=(-.94248 12.566;-12.566 -.94248); B=II1;2]; C=[O 1];
Ao=[-.7 10;-10 -. 71; Bo=[2.44;l.39]; Co=[O 1];
% Ao=A; Bo=B;
Q=eye(2); R=.O1;

xx=x(1:2)'; xhat=x(3:4)';

[K,s]=lqr(Ao,Bo,Q,R);

xxdot=A*xx+B*u;
xhatdot= (Ao-K' *Co) *xhat+Bo*u+KI *Co*xx;

f= fxxdot' xhatdot'];
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APPENDIX Z
MGIN IROG3M FOR NOPFUILNTWD
WifT 'SIQID ACT! VATI'ON FNTiON

AND RZDUCND-ORbDZR O3SNRVER

% Main Program for Hopfield network with sigmoid activation
% function And reduced-order observer

% program neuobs(
%Development of state variable time history

to=O; tf=1; xo=[1 1 13;
(tnew,xnew]=ode2,3('observer' ,toltf,xo);
nl=50;
t=tnew(1:nl);

for i=1:.ni
[fffj=observer(t(i),x(i,:)),;
f(i,1)=ff(3); f(i-,2)=ff(2);

end;
u=sin (t); f=f/nl;

xx2=x(:2) I,*x( 2) /ni;
xxl2=x (0,3) 1 *x (:,f 2) /-n;
xlu=x (:, 3)'*u/nl;
x2u=x (: ,2) 1 *u/nl;
uu=u' *u/nl;

% Calculate average values for weight and bias matrices

W=zeros (6, 6); I=zeros,(1,6);
W(l,1)"xxl; W(l,2)=xxl2; W(1,5)=xlu; W(2,5)=x2u;
W (2,1)=W (1, 2) ; W(2,2)=xx2; W(3,3)=xxl; W(3,4)=W(1,2);
V(3, 6) =W (1, 5) ;
W(4,3)=W(2,1); W(4,4)=W(2,2) ; W(4, 6)=x2u; W(5,1)=W(1,5);
W (5, 2) =W(2, 5) ;
W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);
I(1)=x(:,1) '*f(:,l) ; I(2)=x(:,2) I*f(:,,l); I(3)=x(:,l)I*f(:,2);
1(4) =x ( :,2) *f (: ,2) ; I (5)=u' *f( :, 1); I (6)=u' *f( :,2) ;

% Perform Euler integration on the Hopfield network
% algorithm.

dt=.02; int=lOO; s1=50; lmda=O.l; G=20;
tho=zeros (1, 6);
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for i=2:int;
[thdot, V]=hopobs (W, I, tho, sil, lmda,O),;.
th=thdot*dt+thol;
tho=th'; thpl (i, : )=tho; tvec-(i)=dt*i;

end;
theta=[-.942'48 12'.566 -12.566 -.9424,8 1 2];,,
thvec=sqrt (theta*thetal);
for i=1:6;

VVpl(:,i')=VplI:,i)/theta(i); end;?
wo=sqrt(.94248 A2+12.566A2); plot (wo*tvec,VVpl);

%Subroutine containing Hopfield algorithm

%program hopobs

function(thdot,V]=hopobs(W-,I,th,sl,lmda,G)

for i=1:6
V( i)=G* (2/ (1+exp (-lmda*th(i)))-1);

end ,;

V=[V(1) V(2) V(3') V(4) V(5) V(6)]';
thdot=-s1*W*V+s1*II;

%Subroutine containing state-space formulation of test case

%and reduced-order observer

%program observer

function [f] =observer (t, x)

u=sin (t);
A=[-.94248 12.566;-12.566 -.94248]; B=[1;21; C=[O 1,);
Ao=[-.7 10;-10 -.7]; Bo=(2.44;1.39]; Co=[O 1];
% Ao=A; Bo=B;
Q=eye(1); R=.O1;

xx=x(1:2)'; xlhat=x(3);

xxdot=A*xx+B*u;
xlhatdot=Ao(l,2)*x(2)+Ao(1,i,)*xlhat+Bo(l)*u;

f= [xxdot' xlhatdot];
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APPENDIX P
uazN PRO=MM FOR R301713W 33! WOR
WiTn SIONOID ACTIVTION FUNCTION

TUACKING VXMITION IN GMIN PAANETER, B'(1)

% Main Program for Hopfield network with sigmoid, activation
% function tracking variation in gain parameter B(1)

% program neuobsl(

to=O;, tf=1;- xo=[1 1];
for a=1:5;

if a==l; to=O; tf=1;
elseif a==2; to=1; tf=2;
elseif a==3; to=2; tf=3;
elseif a==4 ; to=3; tf=4;
elseif a==5; to=4; tf=5;

end;

[ttlx=ode23 ('system' ,to,tf,xo);
(nl,p]=size(t); xo=x(nl,:);-

for i=l:nl
tff]=system(t(i),x(i,:)); f(i,:)=ff; end;

u=sin(t); f=f/nl;

xxl=x (: ,1) I*x(: 11) /l;

xxl2=x (:, 1) 1*x (:,2)/nl;
xiu=x (.:,1)' *u/nl;

uu=u' *j/fl3;

% fZ'alculate average values for weight and bias matrices

W=zeros (6, 6); I=zeros (1,6);
W(1,1)=xxl; W(1,2)=xxl2; W(1,5).=xlu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3,3)=xxi; W(3,4)=W(1,2);
W (3, 6)=W(1, 5) ;
W(413)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W (5, 2) =W(2, 5) ;
W (5, 5) =uu; W (6, 6) =uu; W (6, 3)=W (3, 6) ; W (6, 4) =W(4, 6);
I(1)=x(:,1) I*f(:,1) ; I (2)=x(:,2)I*f(:,1); I(3)=x(:,1)I*f(:,2);

% Perform Euler integration on the Hopfield network
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%algorithm..

dt=.02; int=1000.; s150.; lmdA=0.1I; G=20.,
tho=ones (1,6).;

for i"2:int;
(thdot,V] =hopobs(W,,Iltho,s,,1mat,G);
th=thdot *dt+thol;,
tho=th'; thpl(i,:)=tho; Vpl(i,:,)=V'; end;

theta=[-i94248 12.566 -12.566 -.94248 1 2];
thvec=sqrt (theta *theta");
wo -sqrt (.94248A2+12.566^~2);
tvec=dt*[f1: 5.000)'I

gainb(:a) =Vpl(:,5);
for ig=1:5;

j-;1000*ig;
k=1000*ig-999;
gb (k:J) =gainb (:, ig);

end;-

for i=1:1000; BB(i)=1.0; end;
for i=1001:2000; BB(i)=5.0; end;
for i=2001:3000; BB(i)=10.0; eind;
for i=3001:,4000; BB(i,)=0.5; end;
for i=4001:5000; BB(i)=-5.0; end;

plot (wo*tvec, BB, wo*tvec, gb);I

%Subroutine containing Hopfield algorithm

%program hopobs

function [thdot,V] =hop (W, I,th, si,linda, G)

for i=1:6
V(i) =G* (2/ (1+exP (-lmda*th (i)) )-1);

end;

V=[V(1) V(2) V(3) V(4) V(5) V(6)11;
thdot=-s1*W*V+s*Il';

% Subroutine containing state-space formulation of test case
% with step changes in gain parameter B(1)

% program system

function [f]=system(t,x)

85



*u=sin ()
A;=(-.942'48 12.566; -12.566 -. 9-4248]; B=4{1;,2];

if t>=1.6 & t<2.0; -B=[5;2].;
elseif t>=2.O & t<3..O; B=[1O;2];
elsei'f t>=3.0 & t<4'..O; B=[O.5;2];
elseif t>=4.0,& t<5.0; B"[-5.0;2];
end;

xx=x(1:2)';
xxdot=A*xx+B*u;
f=xxdot';
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